133 research outputs found

    InterAKTions with FKBPs - mutational and pharmacological exploration

    Get PDF
    The FK506-binding protein 51 (FKBP51) is an Hsp90-associated co-chaperone which regulates steroid receptors and kinases. In pancreatic cancer cell lines, FKBP51 was shown to recruit the phosphatase PHLPP to facilitate dephosphorylation of the kinase Akt, which was associated with reduced chemoresistance. Here we show that in addition to FKBP51 several other members of the FKBP family bind directly to Akt. FKBP51 can also form complexes with other AGC kinases and mapping studies revealed that FKBP51 interacts with Akt via multiple domains independent of their activation or phosphorylation status. The FKBP51-Akt1 interaction was not affected by FK506 analogs or Akt active site inhibitors, but was abolished by the allosteric Akt inhibitor VIII. None of the FKBP51 inhibitors affected AktS473 phosphorylation or downstream targets of Akt. In summary, we show that FKBP51 binds to Akt directly as well as via Hsp90. The FKBP51-Akt interaction is sensitive to the conformation of Akt1, but does not depend on the FK506-binding pocket of FKBP51. Therefore, FKBP inhibitors are unlikely to inhibit the Akt-FKBP-PHLPP network

    Isolation, purification and characterization of the nucleoside diphosphate kinase from the pathogenic fungus Candida albicans : Comparison with the enzime from other species

    Get PDF
    La enzima nucleósido difosfato quinasa (NDP quinasa) es ubicua y cataliza la síntesis de NTPs a partir de sus correspondientes NDPs y un NTP dador (fisiológicamente el ATP). La reacción sigue una cinética de ping-pong con la formación del intermediario de alta energía (P)NDP quinasa. Aparte de su rol fundamental en la síntesis de NTPs, se ha relacionado a esta enzima con a) la activación de proteínas G en la transducción de señales, b) la diferenciación de Drosophila y distintas líneas celulares, c) inhibición de metástasis (nm23), y recientemente ha sido identificada como d) un factor de transcripción. En el presente trabajo se presentan resultados de la purificación y caracterización de la NDP quinasa de Candida albicans, un hongo patógeno oportunista de vertebrados. Se caracterizó la enzima bioquímicamente, en cuanto a su tamaño, al número de subunidades, su punto isoeléctrico, su estabilidad térmica, y la posibilidad de usar distintos NTPs y NDPs como dadores y aceptores de la reacción. A través de dos enfoques experimentales diferentes se demostró que los nucleótidos de guanina y adenina son los mejores aceptores de la reacción (Arch). Biochem. Biophys. (1995), 187-194). Se evaluó a su vez, la capacidad de NDP quinasas de distinto origen de fosforilar a análogos de nucleótidos utilizados en terapias antivirales; para ello, se desarrolló la metodología para medir la actividad NDP quinasa con estos sustratos (J. Biol. Chem. (1996), 271, en prensa). Se estudió la actividad y la presencia de la enzima durante el crecimiento y la morfogénesis del hongo; la actividad específica máxima se encontró durante el crecimiento logarítmico (An. Asoc. Quím. Argent. (1993), 81, 4-5, 359-366). Se realizó un estudio detallado del proceso de autofosforilación de la NDP quinasa, y se encontró que sólo se encuentra autofosforilada en residuos de histidina. La autofosforilación de la enzima también se realizó en extractos crudos de C. albicans y de Escherichia coli. Dado que la NDP quinasa se autofosforila en residuos de histidina como parte de su mecanismo de acción, los ensayos para estudiar la posible regulación de la enzima por fosforilación a través de alguna quinasa necesitan de una metodología que pueda distinguir la fosforilación en histidina de aquella en serina o treonina. Se desarrolló entonces una metodología sobre membranas de Immobilon con el uso de buffers de pH 1 y 14 con el agregado de 5 por ciento metano. Esta metodología se utilizó para estudiar la fosforilación in vivo en C. albicans y en células HeLa en cultivo. Se discuten las posibles implicancias de la fosforilación en serina in vivo.Nucleoside diphosphate kinase (NDP kinase) is a ubiquitous enzyme catalysing the synthesis of NTPs from its corresponding NDPs using a NTP donor (physiologically ATP). The reaction follows a ping-pong mechanism of catalysis with a (P)NDP kinase high energy intermediate. Apart of its essential role in the synthesis of NTPs, this enzyme has been related to a) G-protein interaction in signal transduction, b) differentiation in Drosophila and different cell lines, c) inhibition of metastasis (nm23), and has recently been identified to d) a transcription factor. In the present work, data are presented on the purification of Candida albicans NDP kianse as well as a biochemical characterization of the enzyme, number and type of subunits, pI, thermal stability and the possibility to use as substrates different NTPs and NDPs. By two different approaches, guanine and adenine di and triphosphates were found to be the better acceptors and donors of the reaction (Arch. Biochem. Biophys. (1995), 187-194). The ability of NDP kinase to phosphorylate different anti-HIV nucleotide analogs was addressed, and a methodology was developed to measure the enzyme activity with these substrates (J. Biol. Chem. (1996), 271, in press). The specific activity of the enzyme during the growth and morphogenesis of C. albicans was studied; the specific activity was found to be maximal during logarithmic growth (An. Asoc. Quím. Argent. (1993), 81, 4-5, 359-366). Using purified enzyme, a detailed study of the pure enzyme autophosphorylation was carried out; the results indicated that only histidine autophosphorylation was found. Autophosphorylation in C. albicans and Escherichia coli crude extracts was also performed. As NDP kinase autophosphorylates in a histidine residue as part of its kinetic mechanism of action, the studies of phosphorylation by other kinases need to discriminate between phosphorylation on serine/threonine and histidine residues. A method on Immobilon membranes using 5 per centum methanol in buffers of pH 1 and 14 is described. This method was used to study the in vivo phosphorylation of the enzyme in C. albicans and in HeLa cells in culture. Possible implications of in vivo NDP kinase serine phosphorylation are discussed.Fil:Biondi, Ricardo M.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Aislamiento, purificación y caracterización de la nucleósido difosfato quinasa del hongo patógeno Candida albicans : Comparación con otras especies

    Get PDF
    La enzima nucleósido difosfato quinasa (NDP quinasa) es ubicua y cataliza la síntesis de NTPs a partir de sus correspondientes NDPs y un NTP dador (fisiológicamente el ATP). La reacción sigue una cinética de ping-pong con la formación del intermediario de alta energía (P)NDP quinasa. Aparte de su rol fundamental en la síntesis de NTPs, se ha relacionado a esta enzima con a) la activación de proteínas G en la transducción de señales, b) la diferenciación de Drosophila y distintas líneas celulares, c) inhibición de metástasis (nm23), y recientemente ha sido identificada como d) un factor de transcripción. En el presente trabajo se presentan resultados de la purificación y caracterización de la NDP quinasa de Candida albicans, un hongo patógeno oportunista de vertebrados. Se caracterizó la enzima bioquímicamente, en cuanto a su tamaño, al número de subunidades, su punto isoeléctrico, su estabilidad térmica, y la posibilidad de usar distintos NTPs y NDPs como dadores y aceptores de la reacción. A través de dos enfoques experimentales diferentes se demostró que los nucleótidos de guanina y adenina son los mejores aceptores de la reacción (Arch). Biochem. Biophys. (1995), 187-194). Se evaluó a su vez, la capacidad de NDP quinasas de distinto origen de fosforilar a análogos de nucleótidos utilizados en terapias antivirales; para ello, se desarrolló la metodología para medir la actividad NDP quinasa con estos sustratos (J. Biol. Chem. (1996), 271, en prensa). Se estudió la actividad y la presencia de la enzima durante el crecimiento y la morfogénesis del hongo; la actividad específica máxima se encontró durante el crecimiento logarítmico (An. Asoc. Quím. Argent. (1993), 81, 4-5, 359-366). Se realizó un estudio detallado del proceso de autofosforilación de la NDP quinasa, y se encontró que sólo se encuentra autofosforilada en residuos de histidina. La autofosforilación de la enzima también se realizó en extractos crudos de C. albicans y de Escherichia coli. Dado que la NDP quinasa se autofosforila en residuos de histidina como parte de su mecanismo de acción, los ensayos para estudiar la posible regulación de la enzima por fosforilación a través de alguna quinasa necesitan de una metodología que pueda distinguir la fosforilación en histidina de aquella en serina o treonina. Se desarrolló entonces una metodología sobre membranas de Immobilon con el uso de buffers de pH 1 y 14 con el agregado de 5 por ciento metano. Esta metodología se utilizó para estudiar la fosforilación in vivo en C. albicans y en células HeLa en cultivo. Se discuten las posibles implicancias de la fosforilación en serina in vivo

    Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum

    Get PDF
    The green fluorescent protein (GFP) is currently being used for diverse cellular biology approaches, mainly as a protein tag or to monitor gene expression. Recently it has been shown that GFP can also be used to monitor the activation of second messenger pathways by the use of fluorescence resonance energy transfer (FRET) between two different GFP mutants fused to a Ca2+ sensor. We show here that GFP fusions can also be used to obtain information on regions essential for protein function. As FRET requires the two GFPs to be very close, N- or C-terminal fusion proteins will not generally produce FRET between two interacting proteins. In order to increase the probability of FRET, we decided to study the effect of random insertion of two GFP mutants into a protein of interest. We describe here a methodology for random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit using a bacterial expression vector. The selection and analysis of 120 green fluorescent colonies revealed that the insertions were distributed throughout the R coding region. 14 R/GFP fusion proteins were partially purified and characterized for cAMP binding, fluorescence and ability to inhibit PKA catalytic activity. This study reveals that GFP insertion only moderately disturbed the overall folding of the protein or the proper folding of another domain of the protein, as tested by cAMP binding capacity. Furthermore, three R subunits out of 14, which harbour a GFP inserted in the cAMP binding site B, inhibit PKA catalytic subunit in a cAMP-dependent manner. Random insertion of GFP within the R subunit sets the path to develop two-component FRET with the C subuni

    The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?

    Get PDF
    For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth

    Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression

    Get PDF
    Abstract Candida albicans undergoes a reversible morphological transition from single yeast cells to pseudohyphal and hyphal filaments. In this organism, cAMP-dependent protein kinase (PKA), coded by two catalytic subunits (TPK1 and TPK2 ) and one regulatory subunit (BCY1 ), mediates basic cellular processes, such as the yeastto-hypha transition and cell cycle regulation. It is known that both Tpk isoforms play positive roles in vegetative growth and filamentation, although distinct roles have been found in virulence, stress response and glycogen storage. However, little is known regarding the participation of Tpk1p and/or Tpk2p in pseudohyphal development. This point was addressed using several C. albicans PKA mutants having heterozygous or homozygous deletions of TPK1 and/or TPK2 in different BCY1 genetic backgrounds. We observed that under hypha-only inducing conditions, all BCY1 heterozygous strains shifted growth toward pseudohyphal morphology; however, the pseudohypha : hypha ratio was higher in strains devoid of TPK2. Under pseudohypha-only inducing conditions, strains lacking TPK2 were prone to develop short and branched pseudohyphae. In tpk2 /tpk2 strains, biofilm architecture was markedly less dense, composed of short pseudohyphae and blastospores with reduced adhesion ability to abiotic material, suggesting a significant defect in cell adherence. Immunolabelling assays showed a decreased expression of adhesins Als1p and Als3p only in the tpk2 /tpk2 strain. Complementation of this mutant with a wild-type copy of TPK2 restored all the altered functions: pseudohyphae elongation, biofilm composition, cell aggregation and adhesins expression. Our study suggests that the Tpk2p isoform may be part of a mechanism underlying not only polarized pseudohyphal morphogenesis but also cell adherence

    Modulation of the substrate specificity of the kinase PDK1 by distinct conformations of the full-length protein

    Get PDF
    The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1

    Mutations in the MutSα interaction interface of MLH1 can abolish DNA mismatch repair

    Get PDF
    MutLα, a heterodimer of MLH1 and PMS2, plays a central role in human DNA mismatch repair. It interacts ATP-dependently with the mismatch detector MutSα and assembles and controls further repair enzymes. We tested if the interaction of MutLα with DNA-bound MutSα is impaired by cancer-associated mutations in MLH1, and identified one mutation (Ala128Pro) which abolished interaction as well as mismatch repair activity. Further examinations revealed three more residues whose mutation interfered with interaction. Homology modelling of MLH1 showed that all residues clustered in a small accessible surface patch, suggesting that the major interaction interface of MutLα for MutSα is located on the edge of an extensive β-sheet that backs the MLH1 ATP binding pocket. Bioinformatic analysis confirmed that this patch corresponds to a conserved potential protein–protein interaction interface which is present in both human MLH1 and its E.coli homologue MutL. MutL could be site-specifically crosslinked to MutS from this patch, confirming that the bacterial MutL–MutS complex is established by the corresponding interface in MutL. This is the first study that identifies the conserved major MutLα–MutSα interaction interface in MLH1 and demonstrates that mutations in this interface can affect interaction and mismatch repair, and thereby can also contribute to cancer development

    Computer Simulation on the Cooperation of Functional Molecules during the Early Stages of Evolution

    Get PDF
    It is very likely that life began with some RNA (or RNA-like) molecules, self-replicating by base-pairing and exhibiting enzyme-like functions that favored the self-replication. Different functional molecules may have emerged by favoring their own self-replication at different aspects. Then, a direct route towards complexity/efficiency may have been through the coexistence/cooperation of these molecules. However, the likelihood of this route remains quite unclear, especially because the molecules would be competing for limited common resources. By computer simulation using a Monte-Carlo model (with “micro-resolution” at the level of nucleotides and membrane components), we show that the coexistence/cooperation of these molecules can occur naturally, both in a naked form and in a protocell form. The results of the computer simulation also lead to quite a few deductions concerning the environment and history in the scenario. First, a naked stage (with functional molecules catalyzing template-replication and metabolism) may have occurred early in evolution but required high concentration and limited dispersal of the system (e.g., on some mineral surface); the emergence of protocells enabled a “habitat-shift” into bulk water. Second, the protocell stage started with a substage of “pseudo-protocells”, with functional molecules catalyzing template-replication and metabolism, but still missing the function involved in the synthesis of membrane components, the emergence of which would lead to a subsequent “true-protocell” substage. Third, the initial unstable membrane, composed of prebiotically available fatty acids, should have been superseded quite early by a more stable membrane (e.g., composed of phospholipids, like modern cells). Additionally, the membrane-takeover probably occurred at the transition of the two substages of the protocells. The scenario described in the present study should correspond to an episode in early evolution, after the emergence of single “genes”, but before the appearance of a “chromosome” with linked genes
    corecore